SAP® Digital Supply Chain

What’s New in SAP Integrated Business Planning
2002 (Planned)

SAP Product & Solution Management
January 21, 2020

PUBLIC
Disclaimer

The information in this presentation is confidential and proprietary to SAP and may not be disclosed without the permission of SAP. Except for your obligation to protect confidential information, this presentation is not subject to your license agreement or any other service or subscription agreement with SAP. SAP has no obligation to pursue any course of business outlined in this presentation or any related document, or to develop or release any functionality mentioned therein.

This presentation, or any related document and SAP’s strategy and possible future developments, products and or platforms directions and functionality are all subject to change and may be changed by SAP at any time for any reason without notice. The information in this presentation is not a commitment, promise or legal obligation to deliver any material, code or functionality. This presentation is provided without a warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. This presentation is for informational purposes and may not be incorporated into a contract. SAP assumes no responsibility for errors or omissions in this presentation, except if such damages were caused by SAP’s intentional or gross negligence.

All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.
Sneak Preview

Since Q4/2018, the what's new webinar as well as the application help are planned to be available before the actual release data.

BUT… things can happen … and features might still be delayed. Therefore: „This is the current state of planning and may be changed by SAP at any time.”
Agenda

- Analytics and Exception Management
- IBP Excel Add-in
- Web-based Planning
- Copy Operator (Advanced)
- Sales & Operations Planning
- Demand Planning and Sensing
- Order-based Planning
- Inventory Optimization
- DDMRP
- Best Practices
- Model Configuration
- Simplified Key Figure Calculations
- Integration
- Application Jobs
- Attribute Permissions

Q&A: Chat is open for questions throughout the session with experts online to answer
Documentation Updates
Christoph Ulbert
SAP Fiori Launchpad: What’s New Mode for In-App Help

- The in-app help now comes with two modes:
 - *What’s New mode* (red hotspots) → To highlight changes of the new release directly in the app.
 - *Regular mode* (green hotspots) → User assistance for existing and, of course, new features in the app.
SAP Fiori Launchpad: *What’s New Mode for In-App Help*
Analytics and Exception Management
Kenton Harman
Intelligent Visibility
Introducing IBP Intelligent Visibility

INTELLIGENT VISIBILITY

• Introducing the new Intelligent Visibility app with IBP2002. This app allows the supply chain analyst to view the supply chain as a network with the exceptions that impact performance.

• Supply chain analysts can use Intelligent Visibility to visualize the relationships between locations and where disruptions will have an impact to performance. The analyst can review the performance metrics and impacts of the disruptions and navigate into other areas of Integrated Business Planning to take actions towards resolution.
Supply Network layer

- You can display your supply chain network on a map and view how locations are connected and how products are moving between locations
- Select a planning area and version
- Select Supply Chain Network layer
- Enter one or more products whose supply chain network you want to view and click Go
Alerts layer list

- By selecting a location, the list of alerts is displayed in the right side panel.

- You can select one or multiple alerts and navigate to the **Monitor Custom Alerts** app to analyse further those alerts or take any action that’s available there to resolve the issue.
Navigation to Web-Based Planning from the Alert Monitor

You can now navigate to the Web-Based Planning app from the Monitor Custom Alerts allowing the alert to be solved by changing data.
Partial refresh of data in the Alert Monitor

- You can refresh specific subscriptions or all subscriptions
- The refresh will trigger the recalculation of the alerts and the buffer will be updated with the new entries
Snooze an alert for just yourself, or all users or user groups

- You can snooze an alert for yourself or for all the users who have access to this alert.
- If a specific user has snoozed it already for herself, the **snooze for all users** feature will not overwrite the snoozed information of that user.
- Similarly, you can **activate** an alert when it’s snoozed for yourself or for all the users who have access to this alert.
Alert Monitor – Filter bar redesign with a Go button

When user navigates directly to the Monitor Custom Alerts app, the search needs to be done manually limiting the number of alerts analyzed and retrieved.
IBP Analytics
Change the font size of the displayed values on charts and axis

- You can change the font size of the displayed values on the graph for better readability
- By default the font size of the data labels is 12
- You can change the font size from 8 to 28
First and Last values

- You can reduce the amount of labels displayed on a graph by showing only the first and the last values.

- This is especially useful with trend charts (e.g. line chart).
Min and Max values

- You can reduce the amount of labels displayed on a graph by showing only the Minimum and the Maximum values.
Navigation to External Systems

Users can:

• Create and save variants for the list report
• Configure contextual navigation to web apps that can be used from Custom Alerts and Analytics
IBP Excel Add-In 2002.2.0
Anna Linden
Enhanced Tooltip for key figures and attributes incl ID, name and description

We have further enhanced the Tooltip in the Edit Planning View Window for key figures and attributes so that now ID, Name and Description are shown.

• Key Figure Name
• Key Figure ID
• Key Figure Description

• Attribute Name
• Attribute ID
• Attribute Description

Remark: The description will only show if it is different from the name.
Enhanced Tooltip for key figures with hashtags

Key figures can have hashtags in the tooltip of the Edit Planning View window.

Hashtags make it easier to find key figures that have a certain specification. Planners can click on a hashtag to display which other key figures share this information. This can be useful when you are looking for key figures that share a common trait that you could otherwise not filter for.
New SAP Fiori app “User Login Statistics for IBP Excel Add-in“

The new app provides an overview around the logins via the IBP Excel add-in and provides detailed information about the IBP Excel add-in version that was used, the user name and contact details, and the number of logins in that specific week.

This app is designed to be used by the administrator.

Using this app, administrator can send an email to the user who is using an old IBP Excel Add-In version.

Dear IBP User,

You are currently using one of the following IBP Excel add-in versions:

1902

In order to utilize the new features, please upgrade to the latest version of the IBP Excel add-in 2002.0.0.

Kind regards,
IBP Administrator
Web-based Planning
Pramod Mane
Planning Notes

- You can use this feature to view planning notes that have been created in the IBP Excel add-in to get more contextual information about key figure values.
- As of 2002 release any existing planning notes for a key figure are automatically shown in the planning view.
- **Caution:**
 - Planning notes are shown for all planning levels and switching them off is not possible.
 - If planning notes should impact the performance of your system, try to remove some key figures from your planning view for which a lot of planning notes exist.
Planning Notes

Web-based Planning

This presentation and SAP's strategy and possible future developments are subject to change and may be changed by SAP at any time for any reason without notice. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or noninfringement.

Planning Notes for Consensus Demand Plan Qty in Time Period 2020 CW07 (2)

<table>
<thead>
<tr>
<th>Planning Note</th>
<th>Value at Time of Creation</th>
<th>UOMTOID</th>
<th>Changed On</th>
<th>Changed By</th>
<th>Filter</th>
<th>Time Period</th>
<th>LOCREGION</th>
<th>PRDFAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased by 5%</td>
<td>2100.000000</td>
<td>EA</td>
<td>1/17/2020, 11:27:35 PM</td>
<td>Pramod Mane</td>
<td>2020 CW07</td>
<td>APJ</td>
<td>FAMILY 100-HEADPHONES</td>
<td></td>
</tr>
<tr>
<td>APJ region Semi-Annual Sale head phones product family</td>
<td>2000.000000</td>
<td>EA</td>
<td>1/17/2020, 11:25:33 PM</td>
<td>Pramod Mane</td>
<td>2020 CW07</td>
<td>APJ</td>
<td>FAMILY 100-HEADPHONES</td>
<td></td>
</tr>
</tbody>
</table>
Web-Based Planning Enhancements

Filtering for Multiple Planning Areas in the Planning View List
• Previously, you could filter the list of planning views only for a single planning area. To help support users who work with planning views from different planning areas, it is now made possible to filter for multiple planning areas.

Display of Decimal Places for Key Figures
• In the planning view, the decimal places of a key figure are now displayed as configured for the key figure

Improved Attribute Value Search
• When you search for an attribute value, you no longer need to enter the exact name of the attribute value. If you just add part of it, the system will search for all the attribute values that contain the characters you entered.
Web-Based Planning Enhancements

Indication of Personal Data
• A new icon in the column header indicates if a master data attribute in your planning view contains personal data.

Reason Codes and Comments in Planning View
• Allows to select reason codes and write comments to provide more information about key figure changes. These reason codes and comments are captured along with the key figure changes in change history, or they can be shared with a SAP Jam group.
• Using reason codes and comments is optional.
Web-Based Planning Enhancements

Enhanced Refreshing and Loading of Data for the Planning View

- Two separate options can help speed up refreshing and loading of data for the planning view.
- You can now decide to refresh only the key figure data together with any changed metadata, that is, data that makes up the planning view such as names, descriptions, and values of planning level attributes, names and descriptions of key figures, versions, scenarios, and time periods.
- Or, if required, you can decide to refresh the key figure data together with the full set of metadata for the planning view.
Web-Based Planning Enhancements

Dynamic Selection of Attribute Values

• As of this release, dynamic selection of attributes is active in the Web-Based Planning app.

• This means that the user can search for any attribute values that are not loaded because of the threshold set in the MAX_DIM_MEMBERS global configuration parameter by searching for them in the search field.

• Up to now, the system only loaded as many attribute values for the value help in the ad hoc filter as configured in the system. If there were more attribute values than the configured threshold allowed, there was no possibility for the user to select these values.

• To make the remaining attribute values available, the configuration expert had to increase the value of the MAX_DIM_MEMBERS global configuration parameter. This parameter controls how many attribute values the system shows in the value help. Loading more attribute values, however, could impact performance, because it increased loading time.
Copy Operator (Advanced)

Thomas Kretz
Introduction of the New Copy Operator

A new *Copy Operator (Advanced)* is introduced with IBP 2002 and will replace the existing copy and disaggregation operators in a *non-disruptive* way over the next releases.

- For several releases the existing operators and the new copy operator will exist in parallel.
- You decide which operators you want to use. SAP recommends using the new copy operator.
- You can easily import configurations of existing operators.
- You can migrate disaggregation operators without having to adapt dependent templates and jobs.
- A mass migration of the old operators is planned for a later release.
Key Benefits of the New Copy Operator

The new copy operator...

- ...covers all **features** of the existing copy and disaggregation operator (and a little more).
- ...can be used in a more **flexible** way.
- ...should be competitive with respect to **performance**.
- ...can be set up in a **user-friendly** way using the Copy Operator Profiles app.
Key Benefits of the New Copy Operator

Features

The new copy operator offers all features of the two existing operators plus some additional options.

- You can copy values from source to target key figures within one planning area or between two planning areas.
- You can copy multiple key figure pairs on different copy levels.
- Source key figure values are aggregated if required.
- Target key figure values are disaggregated if required.
- Missing planning objects and missing time period entries can be created.
- Target key figure values can be initialized.
- Processing can be split into packages to limit memory consumption and the risk of locking issues.
- ...
Key Benefits of the New Copy Operator

Flexibility

You can copy multiple key figure pairs on different levels with one copy operator run. This allows you to simplify application job templates containing multiple copy steps.

For every key figure pair, you can...

- ...define a copy level
- ...create missing periods
- ...clear values.
Key Benefits of the New Copy Operator

Performance

The performance of the new copy operator should be at least comparable to the performance of the copy and disaggregation operators.

- A ‘delta-save’ mechanism helps to speed up processing if many key figure values are unchanged, for example while running a job recurrently.
- The packaged processing mode can significantly reduce the memory consumption.
- Future performance improvements will focus on the new copy operator.
Key Benefits of the New Copy Operator

Usability

The *Copy Operator Profiles* app allows you to easily define all settings for a copy operator run.

The in-app help provides context-sensitive information about the different profile options.
Import Existing Copy or Disaggregation Operators

You can manually import existing copy and disaggregation operators into a copy operator profile.

Copy creates a copy operator profile which is independent of the disaggregation operator.

Migrate creates a copy operator profile which contains the ID of the migrated operator and replaces the migrated operator in all relevant processes.
To use the new copy operator in Excel, you must have the IBP 2002 version of the IBP Excel Add-In installed.

If at least one copy operator profile is defined for your planning area, a new group *Copy Operator (Advanced)* is displayed in the IBP ribbon.
Schedule the New Copy Operator from an Application Job Template

You can use the application job template *Copy and Disaggregate Key Figure Operator* to schedule the new copy operator as well as old disaggregation operators.
Recommendations for Adoption

Test the new copy operator
- You can import existing copy or disaggregation operators as a copy without impacting active processes.

Use the new copy operator
- You can migrate relevant disaggregation operators to use the new operator in existing jobs and application job templates.

Simplify your job chains
- You can simplify your job chains by consolidating copy steps in one copy operator profile.
Sales & Operations Planning
Raghav Jandhyala
Process Management Automation Enhancements

Process Automation Frequency

Previously Process Management Automation for Process Events ran once every 30mins.

You can now control the frequency of automation using the new Global Configuration Parameter:

PROCESS_MGMT_AUTO_FREQUENCY in SCHEDULING parameter group

You can enter any value between 3 and 30 minutes.

Process Charts Enhancements

Information Popup

Order of the icons
Driver Based Planning

Key Figures Used in Driver-Based Planning

You can now use key figures with aggregation modes such as **Avg**, **Max**, **Min**.

In this context, it is now also possible to use the disaggregation mode **Copy Value** for key figures such as **Price**, **Ratio**, or **Count**.

Also, proportional disaggregation is now supported for key figures used in driver-based planning.

Maximum Number of Planning Objects for a Driver

To help prevent performance issues, we’ve limited the number of planning objects that can be generated during driver creation to 1000.
Driver Based Planning

Usability Improvements:

• Filtering for Multiple Planning Areas in the Planning View List

• Display of decimal places for Key Figures

• Improved Attribute Value Search

• Performance Improvements
 • When you save key figure changes for multiple drivers in the summary, the system now saves your changes all at the same time instead of one after the other.
 • Loading of data for the summary view and the whole driver planning view in general has been improved.

• Dynamic Selection of Attribute Values
 User can search for any attribute values that are not loaded because of the threshold set in the MAX_DIM_MEMBERS global configuration parameter by searching for them in the search field.
Driver Based Planning

Usability Improvements:

1. Enhanced Refreshing and Loading of Data for the Planning View

With:

- Refresh Data for Planning View
- Reload Metadata

2. UI Checks for Key Figure Editability – Time Settings

In Summary, Driver Creation/Edit and Details screens, UI now checks for editability of key figures and enables / disables key figure edit accordingly.
Forecast Automation: Micro Charts showing Change Points (1/2)
Enhancement to Change Point Detection

Change Point Detection was already introduced with IBP 1911:

<table>
<thead>
<tr>
<th>Time series analysis & Anomaly detection</th>
<th>Show Analysis Results</th>
<th>Edit</th>
<th>Delete</th>
</tr>
</thead>
</table>

Time Series Analysis
- **Frequency of Reanalysis:** 6 Months
- **Seasonality**
 - Significance for Seasonality Test: 0.2
 - Separate Categories per Type of Seasonality: Off
 - Separate Categories per Length of Seasonal Cycle: Off
- **Trend**
 - Significance of Trend Test: 0.05
 - Separate Categories per Trend Direction: Off
- **Intermittency and Volatility**
 - Probability for White Noise Test: 0.9
 - Intermittency Detection Method: 1.33
 - Average Demand Interval
 - Threshold for Lumpy Demand (CV Squared): 0.5
 - Separate Category for Lumpy Demand: Off

Outputs for Calculation Levels
<table>
<thead>
<tr>
<th>Calculation Levels</th>
<th>Attribute for Time Series Properties</th>
<th>Key Figure for Seasonality Pattern</th>
<th>Key Figure for Average Demand Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer ID - Product ID - Monthly</td>
<td>Time Series Property (TIMESERIESPROPERTY)</td>
<td>Seasonality Pattern (SEASONALPATTERN)</td>
<td></td>
</tr>
</tbody>
</table>

Change Point Detection
<table>
<thead>
<tr>
<th>Calculation Levels</th>
<th>Minimum Interval Between Change Points</th>
<th>Minimum Level Shift (%)</th>
<th>Minimum Trend Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer ID - Product ID - Monthly</td>
<td>5</td>
<td>20%</td>
<td>25%</td>
</tr>
</tbody>
</table>
New with IBP 2002:
Micro charts to visualize the detected change points on the overview screen
Segmentation

Lag-specific Key Figures as Segmentation Measure

Key figures that have the “Lag” attribute as a root in their base planning levels are now available for being selected as segmentation measures for ABC and XYZ segmentation.

Example for XYZ Segmentation:

- “Demand Planning Forecast Error” is a lag-specific key figure - means it contains forecast error for e.g. lag 1, 3 and 6
- XYZ Segmentation should be done based on the pre-calculated Lag 3 “Demand Planning Forecast Error”

⇒ Key figure “Demand Planning Forecast Error” can now be used as Segmentation measure

When running Segmentation Job, “Lag = 3” need to be defined in the filter.
Forecast Settings done for Product Lifecycle visible in IBP Excel Add-In (1/2)

Visibility of References and Forecast Dates in Master Data Sheets

When forecasting new or obsolete/replaced products, the “Manage Product Lifecycle” App can be used to define details of the statistical forecasting process like:

- From which similar reference product should the new product “borrow” the sales history
- When is the new product launched in the different markets/countries/customers
- How will the phase-in-curve may look like

The settings of the “Manage Product Lifecycle” App can be made visible in the IBP Excel Add-In Master Data Sheet if required. Several steps are required for this

- Setup external master data types
- Re-use delivered external data sources
- Enhance planning area

For more details of the setup and configuration, see the SAP IBP application help
Forecast Settings done for Product Lifecycle visible in IBP Excel Add-In (2/2)

Visibility of References and Forecast Dates in Master Data Sheets

Example of showing the forecast dates in the Master Data Sheet

![Image of Excel sheet with Master Data Workbook and data entries]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Area</td>
<td>Product</td>
<td>Dimension Value</td>
<td>Forecast Start</td>
<td>Phase-In Start</td>
<td>Phase-In End</td>
<td>Phase-In Curve</td>
<td>Phase-Out Start</td>
<td>Phase-Out End</td>
<td>Phase-Out Curve</td>
</tr>
<tr>
<td>WDIDAP6P</td>
<td>HT_005</td>
<td>CA1000</td>
<td>2017-09-01</td>
<td>2017-10-13</td>
<td>2017-11-02</td>
<td>33132312321</td>
<td>2017-11-01</td>
<td>2017-11-02</td>
<td></td>
</tr>
<tr>
<td>WDIDAP6P</td>
<td>HT_005</td>
<td>MDES200</td>
<td>2017-10-01</td>
<td>2017-10-13</td>
<td>2017-11-02</td>
<td>33132312321</td>
<td>2017-11-01</td>
<td>2017-11-02</td>
<td></td>
</tr>
<tr>
<td>WDIDAP6P</td>
<td>HT_007</td>
<td>CA1000</td>
<td>2017-09-01</td>
<td>2017-10-13</td>
<td>2017-11-02</td>
<td>33132312321</td>
<td>2017-11-01</td>
<td>2017-11-02</td>
<td></td>
</tr>
<tr>
<td>WDIDAP6P</td>
<td>HT_008</td>
<td>CA1000</td>
<td>2017-08-10</td>
<td>2017-08-10</td>
<td>2017-08-10</td>
<td>2017-08-11</td>
<td>2017-08-11</td>
<td>2017-08-11</td>
<td></td>
</tr>
<tr>
<td>WDIDAP6P</td>
<td>HT_008</td>
<td>EMEA200</td>
<td>2017-08-11</td>
<td>2017-08-11</td>
<td>2017-08-11</td>
<td>2017-08-11</td>
<td>2017-08-11</td>
<td>2017-08-11</td>
<td></td>
</tr>
<tr>
<td>WDIDAP6P</td>
<td>HT_008</td>
<td>US9001</td>
<td>2017-08-10</td>
<td>2017-08-10</td>
<td>2017-08-10</td>
<td>2017-08-11</td>
<td>2017-08-11</td>
<td>2017-08-11</td>
<td></td>
</tr>
<tr>
<td>WDIDAP6P</td>
<td>HT_100</td>
<td>456</td>
<td>2017-06-23</td>
<td>2017-06-23</td>
<td>2017-06-23</td>
<td>2017-06-23</td>
<td>2017-06-23</td>
<td>2017-06-23</td>
<td></td>
</tr>
</tbody>
</table>

This presentation and SAP’s strategy and possible future developments are subject to change and may be changed by SAP at any time for any reason without notice. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or noninfringement.
Demand Sensing
Mehmet Demirci
1) Excluding Historical Weeks from Learning

- There may be periods of historical data where demand patterns are distorted due to various reasons: With Demand Sensing in IBP 2002, users can identify such periods in history for the algorithm to treat the associated historical data as outliers.

- **Example:** For this product, we typically have demand around 1,000 – 1,500 units a week – but we had 3 big peak-sales periods last year. Our Consensus Demand forecast is generally centered around actual demand – except for these 3 peak periods.

- Demand Sensing has recognized this pattern and corrected this in the sensing horizon.
1) Excluding Historical Weeks from Learning (cont.)

- Actually the 3 peak-sales periods were due to a key competitor stocking out after having production issues: the competitor has now fixed their issues and are able to respond to demand → we don’t want these periods to skew the pattern
- Note that Demand Sensing has built-in statistical outlier detection capabilities already – but some exceptions cannot be caught by math… and can only be defined by humans who know the story
- We can now tag these peak-sales periods as exception periods and ensure Demand Sensing treats them as outliers
2) Disabling Baseline Demand Balancing for Periods with Negative Bias

[Baseline Demand Balancing Allowed for Negative Bias, Baseline Demand Balancing Periods = 1 Week]

- The product is typically negatively biased
- Demand Sensing captures this pattern and sensed negative bias in Consensus Demand for the 6 weeks in the Sensing Horizon

| Bias Adjustment Factor | -0.17 | -0.14 | -0.18 | -0.03 | -0.30 | -0.04 |

DS Full Run on Monday of Week 1

- Large order!

DS Update Run on Wednesday of Week 1

- Very large order comes in later in Week 1
- Baseline Demand Balancing thinks that the exceptionally large order in Week1 is due to timing shift of customer orders… They ordered a lot late in Week1 and won't order their usual quantity in Week2
- Week 2 Sensed Demand reduced
2) Disabling Baseline Demand Balancing for Periods with Negative Bias (cont.)

[Baseline Demand Balancing Not Allowed for Negative Bias, Baseline Demand Balancing Periods = 1 Week]

- The product is typically negatively biased
- Demand Sensing captures this pattern and sensed negative bias in Consensus Demand for the 6 weeks in the Sensing Horizon

| Bias Adjustment Factor | -0.17 | -0.14 | -0.18 | -0.03 | -0.30 | -0.04 |

- Very large order comes in later in Week 1
- Baseline Demand Balancing thinks that the exceptionally large order in Week 1 is due to timing shift of customer orders… They ordered a lot late in Week 1 and won’t order their usual quantity in Week 2…
- But since Week 2 has a predicted negative bias from historical patterns, DS does not reduce Week 2 Sensed Demand further!!!
3) Demand Sensing NPI: Level 2 and Level 3 Launch Assignment Levels can be any Location or Customer Master Data attribute

• In standard IBP Sample Planning Area configurations (e.g., SAP1 UPA, SAP6 Demand), Demand Sensing Algorithms can only run at the Product ID – Location ID – Customer ID level

• In custom-configured planning areas Demand Sensing will run on Product – Location – Customer attributes that have Business Meanings Product Identifier, Location Identifier, and Customer Identifier assigned

• For New Product Introductions (NPI) in Demand Sensing, launch assignment levels can be:
 • Level 1: Product ID
 • Level 2: Any Location or Customer Master Data attribute / or empty
 • Level 3: Any Location or Customer Master Data attribute / or empty

• Before IBP 2002, Demand Sensing could not process Level 2 and Level 3 launch assignment levels as aggregate Location or Customer attributes
Time-Series Supply Settings Fiori App

- Enables flexible assignment of attributes and key figures: You can use different attributes and key figures from the SAP standard ones to represent certain business meanings in supply planning.
Time-Series Supply Settings Fiori App

- You can also set a conversion factor for the aggregated constraints for inventory in this app.
- The conversion factor can represent the unit cost or volume of products, for example. It relates specific products to the minimum and maximum aggregate values for inventory.
- This allows the ability to manage ending inventory in Dollars/Euro.
- For e.g. end of Q4 I would like to have projected inventory of not more than 600 million $ in my network for a particular brand. Here the Unit Cost of the product is the conversion factor. The behavior of the optimizer should be to ramp-down to the specified Aggregate inventory constraint value and then ramp up after that time-period.

<table>
<thead>
<tr>
<th>Master Data Types and Attributes</th>
<th>Key Figures</th>
<th>Aggregated Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version-Specific Key Figure</td>
<td>Version</td>
<td>Conversion Key Figure</td>
</tr>
<tr>
<td>Aggregated Constraint for Projected Stock (MINAGGINVENTORY, MAXAGGINVENTORY)</td>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOWNSIDE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UPSIDE</td>
<td></td>
</tr>
</tbody>
</table>
Time-Series Supply Settings Fiori App

- The functions of this app are only available for normalized planning areas that are enabled for supply planning and that contain at least one supply key figure.

- To find out if a planning area has already been normalized, open the log of an activation that took place after the upgrade to IBP 2002. If the log contains the message Planning area activation is running in a normalized data model., the planning area has already been normalized.

- The new SAP_IBP_BC_TSSUPMAP_PC business catalog gives users access to this app.
Forecast Consumption Calendars

• You can now use calendars in forecast consumption profiles to specify the planning periods in which you don’t expect sales orders and forecasts, that is, the periods in which no forecast consumption would happen.

• The forecast consumption range (defined in the forecast consumption mode) is extended by the number of non-working periods falling inside the range.

• To set up forecast consumption calendars, you must create a calendar, a calendar attribute containing the ID of your calendar, and a master data type for the forecast consumption calendar. Include the calendar attribute in the forecast consumption master data type and then assign this master data type and calendar attribute to a forecast consumption profile in the Forecast Consumption Calendar Assignment section of the Forecast Consumption Profiles app.
Inbound Calendars

- Inbound calendars define whether a period is working or non-working to specify when a receiving location for a location-source of supply is open or closed, i.e. when it can and can't receive goods.

- Non-working periods in inbound calendars typically bring forward net demands and the corresponding transport receipts to an earlier period so that transport receipts aren't planned for non-working periods of the receiving location.

- Inbound calendars are only available for the time-series-based supply planning unconstrained heuristic and the time-series-based supply planning optimizer.

![Inbound Calendars Diagram]

This presentation and SAP's strategy and possible future developments are subject to change and may be changed by SAP at any time for any reason without notice. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or noninfringement.
Inbound Calendars

- The *planning level* of inbound calendars is the same as the location source, as the calendar information relates to a specific location source. This means you can assign inbound calendars to location sources on the planning levels LOCID, PRDID, and LOCFR and, if you've defined means of transport, you can also use the MOTID planning level.

- **Configuration:** Master data attribute (Calendar type) INBOUNDCALID in the location source master data. This must be a calendar attribute type and must contain the calendar ID of the inbound calendar you want to assign to the location source.
New S&OP Operator Primary Parameters

Include negative and positive inventory corrections in your lot-sizing procedures

- Considers values in the **Inventory Correction** key figure in the coverage time span when calculating net demand for lot-sizing procedures 1 (static periods of supply), 2 (dynamic periods of supply), and 5 (dynamic periods of supply with safety stock).

Use Infinite Shelf Life for Negative Projected Inventory

- Assign an infinite shelf life (zero) to supplies from negative inventory. to supplies from negative inventory instead of these supplies inheriting their remaining shelf life from the related net demand.

- Allows to implement a different approach to shelf life planning by being able to distinguish whether inventories, transports, supplies, and receipts (that is, the quantities in all key figures) originate from existing stock (stock on hand) or from new production or external receipts.
Other Enhancements

Demand Category Support for independent demands

- This feature is only available with the time-series-based supply planning heuristic, the time-series-based shelf life planning heuristic, and the time-series-based supply propagation heuristic.

New Features Supported for Finite Heuristic

- Static periods of supply lot-sizing procedure (Lot size policy=1)
- Minimum Customer Receipts, Minimum Production Receipts, Minimum External Receipts, and Minimum Customer Supply key figures
- All maximum key figures except for Maximum Inventory.
- Capacity consumption policy = 1 for production resources
- Additionally, Minimum Transport Supply now has the highest priority in planning.
Use Cases for Subnetworks

Plan only parts of the complete supply chain network to allow

Higher frequency of planning runs to improve reaction on short term issues

Keep parts of the plan stable
- Keep production supply stable while do planning for final assembly or distribution

Split network because of business responsibilities
- Horizontally: Deployment vs. Production Planning
- Vertically: Factory A vs. Factory B

Use different planning algorithms for parts of the supply chain
Definition of Subnetworks

One location material is assigned to exactly one subnetwork.

Assignment is done in S/4 or ERP – IBP Integration Add-On.

The assignment can be validated in IBP using the master data applications for
- Location Material
- Production Data Structure
- Transportation Lane

S/4 or ERP: Location Material Maintenance - /IBP/ECC_LOCMAT

IBP: View Location Materials
Subnetwork Visibility

Transactional Data
- View Confirmations
- Analyze Supply Usage
- View Gating Factors
- View Projected Stock

Excel Planning View
- External data source for master data type location material

IBP: View Projected Stock
Subnetworks in Planning Run Templates

Subnetworks are a new selection parameter for the scope of planning

Subnetworks are supported in the following planning run templates
- Confirmation Run
- Constraint Forecast Run, Constraint Forecast Run using Optimizer
- Deployment Run

Planning Runs “as Operator” do not support subnetworks
Good to know

All selected subnetworks are planned as one big subnetwork

▪ To plan subnetwork by subnetwork, multiple planning runs need to be setup

Pegging, Detailed pegging, Gating Factors, Sales Order Confirmations, Constraint Forecast and Deployment Status for Stock Transfer Requisitions are always calculated for the complete network

▪ Sales Order Confirmations or Constraint Forecast might change in other subnetworks if demand situation or demand prioritization changed after last planning run

Lock granularity remain on complete network

Subnetworks are only supported for Downstream planning

▪ Upstream Supply is considered as fixed and constrained. There is no option to consider upstream supply as infinite as it would be needed for upstream planning

No option to ignore or prioritize Downstream Demands

▪ Downstream demands are handled as fixed dependent demands in pre-allocation segment. Prioritization by date, time together with all other demands in the pre-allocation segment.
Planning Version selector – Example (View Projected Stock)

<table>
<thead>
<tr>
<th>Material Number</th>
<th>Date of First Deviation</th>
<th>Type of First Deviation</th>
<th>First Deviation</th>
<th>Projected Stock</th>
<th>Last Planning Run Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAPT2002C / PV001</td>
<td>01/07/2020</td>
<td>Stock Shortage</td>
<td>-110,519.000 EA</td>
<td></td>
<td>Confirmation Run</td>
</tr>
<tr>
<td>SAPT2002C / PV002</td>
<td>01/07/2020</td>
<td>Stock Shortage</td>
<td>-77,000.000 EA</td>
<td></td>
<td>Confirmation Run</td>
</tr>
<tr>
<td>SAPT2002C / PV001</td>
<td>01/07/2020</td>
<td>Stock Shortage</td>
<td>-31,100.000 EA</td>
<td></td>
<td>Confirmation Run</td>
</tr>
<tr>
<td>SAPT2002C / PV002</td>
<td>01/07/2020</td>
<td>Stock Shortage</td>
<td>-21,000.000 EA</td>
<td></td>
<td>Confirmation Run</td>
</tr>
<tr>
<td>SAPT2002C / PV001</td>
<td>01/07/2020</td>
<td>Stock Shortage</td>
<td>-10,910.000 EA</td>
<td></td>
<td>Confirmation Run</td>
</tr>
</tbody>
</table>

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

This presentation and SAP's strategy and possible future developments are subject to change and may be changed by SAP at any time for any reason without notice. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or noninfringement.
Planning area - periodicity

The Time Profile used by the SAP7 Sample Model was enhanced with Technical Week and Month enabling Excel queries based on these additional Period Types.

-> Use additional periodicities in profiles (e.g. forecast consumption profile), in period type for key figures (e.g. capacity available) or for display (e.g. period settings in transactional apps).
Date/Time

New fields are available to view date/time. The fields can be turned on/off via settings.

The date/time fields have been introduced for Fiori App “View Projected Stock” in IBP2002.

The additional fields will help to better understand planning results.

<table>
<thead>
<tr>
<th>Requested or Planned Date/Time</th>
<th>Goods Receipt Date/Time</th>
<th>Receipt or Requirement ID</th>
<th>Type of Receipt or Requi...</th>
<th>Source or Destination Loc...</th>
<th>Mode of Transport</th>
<th>Received or Requested ...</th>
<th>Projected Stock</th>
<th>Planning-Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/16/2018, 20:00:00 EST</td>
<td>Stock</td>
<td>2583 / 10 / 1</td>
<td>Stock</td>
<td>DC71 Indianapolis</td>
<td></td>
<td>0.000 EA</td>
<td>0.000 EA</td>
<td>Yes</td>
</tr>
<tr>
<td>10/16/2018, 20:00:00 EST</td>
<td>Sales Order</td>
<td>2584 / 10 / 1</td>
<td>Customer 3</td>
<td>Customer 3</td>
<td></td>
<td>-20,000,000 EA</td>
<td>-20,000,000 EA</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-19,990,000 EA</td>
<td>-39,990,000 EA</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Planning-Relevance – Filter

The planning relevant filter has been introduced for Fiori App “View Projected Stock” in IBP2002. It will enable to filter and view only planning relevant data.
Flexible Periodicity

New period settings have been introduced. The new settings will enable to see the relevant dates also in other periodicities (e.g. weeks). The columns can be selected/deselected if needed.

The period settings have been introduced for Fiori Apps “View Projected Stock”, “Analyze Supply Usage” in IBP1911.

The period settings have been introduced for Fiori Apps “View Gating Factor”, “View Confirmations” in IBP2002.
The Fiori App “Planning Calendars” is in the business catalog SAP_IBP_BC_PLAN_BASICS_PC “Planning Basics”, which is in all business roles.

Order-based Planning
New Attribute Types

New Time Zone Attribute

- ID:

- Name:

Description:

- Data Type:
 - NVARCHAR

Length:
 - 6

Save Save and New Cancel

New Calendar Attribute

- ID:

- Name:

Description:

- Data Type:
 - NVARCHAR

Length:
 - 32
Coverage of long production and transportation sourcing cycles – lot size in periods

- For cases where production sourcing and/or transportation sourcing cycles are greater than one week, users can define periods of coverage for lot sizes.
- Feature creates consistency of inventory target plans for key figures:
 - Recommended Safety Stock
 - Cycle Stock (Target)
 - Cycle Stock (Average)
- New attributes as key figures with inputs in weeks, including fractional values, support the feature:
 - Production Lot Size Periods of Coverage (SOURCEPRODUCTION master data type).
 - Transportation Lot Size Periods of Coverage (SOURCELOCATION master data type).
- Impacted Planning Operators:
 - Global (multi-stage) inventory optimization
 - Calculate Target Inventory Components.
Validity dates for transportation sources of supply

- Users can define from and to dates for transportation sources of supply over a planning horizon.
- Several valid periods can be defined for a source of supply. For example, a source can be valid from January to April and from September to November. The source of supply is implicitly invalid between May and August by inventory planning operators.
- Validity dates for sources of supply will have an impact to sourcing ratios, lead time and lead time variability, propagation of demand and demand variability.

For validity dates for transportation sources of supply:
- New master data type Location Source Validity (SOURCELOCATIONVALIDITY) introduced to the SAP3 sample model.
- Attribute as Key Figure Location Sourcing Ratio (TRATIO) in the Location Source master data type serves as the input for transportation sourcing.
- Modes of Transportation supported:
 - When Location Source Validity master data type has mode of transportation defined, but not in Location Source master data type, inputs from the Location Source Validity master data type will be ignored. Business Log: "SOURCELOCATIONVALIDITY / MOTID ignored. Incompatible with SOURCELOCATION".
 - When Location Source master data type has mode of transportation defined, but not in Location Source Validity master data type, inputs from the Location Source Validity Master Data Type will be ignored. Business Log: "SOURCELOCATIONVALIDITY ignored. Incompatible with SOURCELOCATION / MOTID".

- Impacted Planning Operators:
 - Global (multi-stage) inventory optimization
 - Decomposed (single-stage) inventory optimization
Validity dates for production/vendor sources of supply

- Users can define from and to dates for production or vendor sources of supply over a planning horizon.
- Several valid periods can be defined for a source of supply. For example, a source can be valid from January to April and from September to November. The source of supply is implicitly invalid between May and August by inventory planning operators.
- Validity dates for sources of supply will have an impact to sourcing ratios, lead time and lead time variability, propagation of demand and demand variability.
- For validity dates for production or vendor sources of supply:
 - New master data type Production Source Validity (SOURCEPRODUCTIONVALIDITY) introduced to the SAP3 sample model.
 - Attribute as Key Figure Production Sourcing Ratio (PRATIO) in the Location Source master data type serves as the input for production or vendor sourcing.
- Impacted Planning Operators:
 - Global (multi-stage) inventory optimization
 - Calculate Target Inventory Components.
 - Decomposed (single-stage) inventory optimization
- Note on Production Source Validity master data type: Application assumes SOURCEID inputs are unique values for LOCID and PRDID inputs, hence, it is an attribute check in the master data type configuration.
Validity dates for bill of material sources of supply

- Users can define from and to dates for bill of material sources of supply over a planning horizon.
- Several valid periods can be defined for a source of supply. For example, a source can be valid from January to April and from September to November. The source of supply is implicitly invalid between May and August by inventory planning operators.
- Validity dates for sources of supply will have an impact to sourcing ratios, lead time and lead time variability, propagation of demand and demand variability.
- For validity dates for bill of material sources of supply:
 - New master data type Validity Dates for BOMs (PRODUCTIONSOURCEITMVALIDITY) introduced to the SAP3 sample model.
 - Attribute as Key Figure Component Coefficient (COMPONENTCOEFFICIENT) in the Production Source Item master data type serves as the input for bill of material sourcing.
- Impacted Planning Operators:
 - Global (multi-stage) inventory optimization
 - Calculate Target Inventory Components.
 - Decomposed (single-stage) inventory optimization
- Note on Validity Dates for BOMs master data type: Application will ignore LOCID inputs.
Planned Changes in Inventory Global Configuration Parameters

<table>
<thead>
<tr>
<th>Global Parameter Name</th>
<th>IBP 1911 Default Value</th>
<th>IBP 2002 Default Value</th>
<th>IBP 2005 Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMAND_PROPAGATION_SRC_SWITCH</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SMOOTH_SS_AROUND_SRC_CHANGE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EXPOSURE_ROUNDING_FOR_BACKLOG</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NON_STOCKING_PUSH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: Deprecate from UI
Demand-Driven MRP (DDMRP)
Poorya Farahani & Atul Bhandari
With the new ADU operator, planners can schedule a job to re-calculate ADU every day (or on ad-hoc basis)

The new operator provides more flexibility in terms of which inputs to be used for the calculation, the detail of calculation algorithm, and how the output should be stored.

Further, this operator calculates CoV, removing the need to run a separate forecast error operator, as was the case in previous releases.
Four sets of parameters should be maintained:

- **Backward calculation inputs**
 - Historical Demand Signal
 - Input Key Figure: `DEBILHEDDEDEMANDFORADU`
 - Input Horizon Attributes: `ADUPTHORIZON`
 - Input Horizon Default: 21
 - Historical Offset: 0

- **Forward calculation inputs**
 - Future Demand Signal
 - Input Key Figure: `DEBILHEDDEDEMANDFORADU`
 - Input Horizon Attributes: `ADUPTHORIZON`
 - Input Horizon Default: 21

- **Output ADU Setup**
 - Average Daily Usage
 - ADU Output Key Figure: `DEOTOTALADU`
 - Calculation Horizon: 1440
 - Replace Nuts with Zero: Yes
 - Discount Leading Nuts: Yes

- **Output CoV Setup**
 - Coefficient of Variation
 - CoV Output Key Figure: `DEOTOTALADUCV (Demand Coefficient of Variation)`
 - Input Horizon Attributes: `COVHORIZON`
 - Input Horizon Default: 21
Average Daily Usage
Running via Excel vs. Application Jobs

➢ **Note:** ADU operator like other DDMRP operators can be triggered both from Excel or from the application jobs.

➢ When running from Excel, the planner needs to select at least one of the existing subnetworks for the job to be run.

➢ In 2002, running ADU via filter is supported both via sub-network selection and the use of existing planning/add-hoc filters.
Average Daily Usage

Running via Excel vs. Application Jobs

- **Note:** ADU operator like other DDMRP operators can be triggered both from Excel or from the application jobs.
- When running the ADU operator via the application job, selection of subnetwork is not mandatory.
- In 2002, running ADU via filter is supported both via sub-network selection and the use of existing planning/add-hoc filters.
Demand-Driven Replenishment: Order Generation
Push Order Generation on Decoupling Points

In 2002, the system calculates a projection of netflow at the end of DLT for push supply generation:

➢ All demand and supply elements within DLT are neglected (supply elements were already part of netflow, and demand elements are replaced by ADU)

➢ At the end of DLT, netflow is reduced by ADU*DLT as expected inventory position

➢ Then considering the uploaded information about order spikes and open supplies outside the DLT, projection will continue taking all existing demand and supply elements into account and generating push supply elements whenever the projection falls below ToY.

➢ Note: in the attached screen, no open supply and order spikes exist outside the DLT
Demand-Driven Replenishment: Order Generation
Externally Uploaded Data for DDMRP Heuristics in ERP

- The two fields under external interface allows reviewing the status of individual plant-materials based on the uploaded data from IBP into the two ERP staging tables:
 - Demand driven material shows all prod-locs in scope for DDMRP indicating decoupling points and their DLT and their existing (not converted) order recommendation, Buffer Status, the ADU and the Netflow
 - Note that order rec column is cleared after every DDMRP run
 - With the next integration job new order recommendations will be uploaded to this table
 - Buffer status along with the color code are further integrated from IBP to support priority based execution of orders
Demand-Driven Replenishment: Order Generation
Externally Uploaded Data for DDMRP Heuristics in ERP_ctd.

➢ In 2002, information about the sum of open supplies and order spikes that are available on any day outside the DLT are integrated to ECC for calculation of push supply elements outside the DLT.

➢ This information is used to avoid double-reduction/increase of projected stock during the push supply order generation.
SAP Best Practices for SAP IBP – 1911 Update
Ina Glaes
New scope and changes in V18.2002

- Technical upgrade to SAP Integrated Business Planning 2002

- The SAPIBP1 sample planning area offers the optional feature to copy sample analytics and alerts to reduce the manual configuration efforts for the Best Practices processes. The following content types are copied: sample alert definitions, sample alert subscriptions, sample alert overviews, sample dashboards, sample analytics charts, and sample supply chain network charts.

- The IBP – time-series-based inbound integration with SAP S/4HANA scope item has been enhanced and now allows you to integrate the exchange rate as a key figure.

- The IBP for sales and operations – demand review scope item has been enhanced with a new planning view for the Web-Based Planning – Customer app to allow customers to maintain their forecast key figure directly in SAP IBP.

- The IBP for demand – time-series analysis scope item has been enhanced with change point detection and review. Change points are data points at which long-term significant changes can be observed in the characteristics of the time series, such as a level shift or a trend change.

- The IBP for response and supply – supply and allocations planning – heuristic scope item has been enhanced to allow you to navigate directly to the View Gating Factors app from the selected custom alerts.
Copy Analytics and Alerts

- New copy option for the SAPIBP1 planning area

- When copying the unified planning area (SAPIBP1) using the Create New with Dependencies option, you can select the Copy Analytics and Alerts option to copy sample analytics and alerts.

- The following content types are copied:
 - Sample alert definitions (3)
 - Sample alert subscriptions (9)
 - Sample alert overviews (2)
 - Sample dashboards (12)
 - Sample analytics charts (64)
 - Sample supply chain network charts (2)

- Reduce manual configuration efforts for the Best Practices processes and replace former configuration guides
Download the following assets:

- Test scripts
- Process flow diagrams
- Scope item recordings
- Configuration guides
- Excel planning view templates
- Sample data CSV files

Rolling Aggregation

Use rolling aggregation to aggregate key figures across several time periods, for a specified time window. Instead of requesting L-code to create such an aggregation, you can use the IBP_RAGGR function to configure rolling aggregation in one step.

AGGREGATEDDEMAND@PERPRODLOC = IBP_RAGGR ("DEMAND@PERPRODLOC", "SUM", -1, 3, "PASTCURRENTFUTURE")

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>60</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>3 Months Aggregated</td>
<td></td>
</tr>
<tr>
<td>Rolling Demand</td>
<td>60</td>
<td>140</td>
<td>150</td>
<td>140</td>
<td>80</td>
<td>90</td>
<td>80</td>
<td>120</td>
<td>110</td>
<td>180</td>
<td>120</td>
</tr>
</tbody>
</table>

MINDEMAND@PERPRODLOC = IBP_RAGGR ("DEMAND@PERPRODLOC", "MIN", 0, 4, "CURRENTFUTURE")

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>20</td>
<td>30</td>
<td>10</td>
<td>40</td>
<td>20</td>
<td>60</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>4 Months Minimum</td>
<td></td>
</tr>
<tr>
<td>Rolling Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
</tbody>
</table>
Period shift
Shifting by a fix number

Use period shift to shift key figure values by time periods.

Use a constant to define the number of periods by which you want to shift the input key figure.

The number has to be either a positive integer (you shift into the future) or a negative integer (you shift into the past).

Example: shifting the value of actual quantity by 12 months in to the future

\[
\text{ACTUALSQTyOFFSET@REQUEST} = \text{SUM("ACTUALSQTyOFFSET@MTHPROMLOC")} \\
\text{ACTUALSQTyOFFSET@MTHPROMLOC} = \text{IBP_PERIODSHIFT("ACTUALSQTy@MTHPROMLOC", 12)}
\]
Period shift
Shifting by an attribute (assigned to a master data type)

Use an attribute, which is assigned to a master data type, to define the number of periods by which you want to shift the input key figure.

The value of the attribute has to be an integer.

Example: LAG is an attribute assigned to a master data type and assigned to the planning level MTHPRODLOC

\[
\text{ACTUALSQTYOFFSET@REQUEST} = \text{SUM("ACTUALSQTYOFFSET@MTHPRODLOC")}
\]
\[
\text{ACTUALSQTYOFFSET@MTHPRODLOC} = \text{IBP_PERIODSHIFT("ACTUALSQTY@MTHPRODLOC", "LAG")}
\]

LAG is an attribute to indicate lead times for supply planning for shifting key figures.

Different products can have different lead times in terms of shipping depending on the product characteristics (for example, size and weight). In this example, the value of LAG is 1 for PRDID1, and 2 for PRDID2. That is, you shift the value of actual quantity by 1 in case of product 1, and by 2 in case of product 2.
Period shift

Shifting by a key figure (integer)

Example: OFFSETKEYFIGURE@MTHPRODLOC with integer values

\[\text{ACTUALSQTYOFFSETSUM@REQUEST} = \text{SUM} (\text{"ACTUALSQTYOFFSETSUM@MTHPRODLOC"}) \]

\[\text{ACTUALSQTYOFFSETSUM@MTHPRODLOC} = \text{IBP_PERIODSHIFT(\"ACTUALSQTY@MTHPRODLOC\", \"OFFSETKEYFIGURE@MTHPRODLOC\")} \]

\[\text{ACTUALSQTYOFFSETAVG@REQUEST} = \text{AVG} (\text{"ACTUALSQTYOFFSET@MTHPRODLOC"}) \]

\[\text{ACTUALSQTYOFFSETAVG@MTHPRODLOC} = \text{IBP_PERIODSHIFT(\"ACTUALSQTY@MTHPRODLOC\", \"OFFSETKEYFIGURE @MTHPRODLOC\")} \]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCID1</td>
<td>PRID1</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTY</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTYOFFSETSUM</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTYOFFSETAVG</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>OFFSETKEYFIGURE</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRID2</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTY</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTYOFFSETSUM</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTYOFFSETAVG</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>OFFSETKEYFIGURE</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCID2</td>
<td>PRID2</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTY</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTYOFFSETSUM</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTYOFFSETAVG</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>OFFSETKEYFIGURE</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCID3</td>
<td>PRID3</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTY</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTYOFFSETSUM</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>ACTUALSQTYOFFSETAVG</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>OFFSETKEYFIGURE</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

This presentation and SAP's strategy and possible future developments are subject to change and may be changed by SAP at any time for any reason without notice. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or noninfringement.
Integration
Reinhard Sudmeier
New features in Integration of IBP Systems

An Overview

- Integration of time series based planning areas
 - Direct Integration of factory calendars (not using CPI-DS)
 - Exchange rates integration from S/4HANA / ECC to IBP as time dependent key figures
 - Possibility to trigger automatic load of latest changes from CPI-DS when reading transactional data (orders and stock)
 - Support of batch dependent data integration on the S/4HANA / ECC side (not supported by SAPIBP1)
 - Import of user-defined outlier periods in the past for demand planning
 - Integration of Push Supply orders and Decoupling Points from ECC to Demand Driven Replenishment

- New OData service for extracting planning calendar data

- Integration of order based planning areas
 - Support of Subnetworks
 - The TLS 1.0 encryption protocol is not supported any longer

- Integration to SAP Cloud Identity Access Governance
 - details provided by Unmesh
IBP – IAG Integration

Unmesh Gandhi
IBP – IAG Integration

- The communication scenario SAP_COM_0066 allows you to connect to SAP Cloud Identity Access Governance with SAP Integrated Business Planning

- IAG Access Request Service
 - User can request access to the IBP system and the necessary authorizations. (creation of a business user and assignment of business roles)
 - User can request additional authorizations for the existing IBP user

- IAG Access Analysis Service
 - Define SoD (segregation of duties) risks based on business rules
 - Identify SoD conflicts for the IBP users
 - Remediate the identified conflicts

- Repository sync of IBP system
 - Periodical replication of existing business users and roles from IBP into IAG
Application Jobs – Email Notification

Unmesh Gandhi
Application Jobs – Email Notification

- The system sends a notification when a scheduled application job encounters one of the following conditions:
 - The job has failed
 - The job has ended because of user error
 - The job was cancelled during execution

- The notification is sent to the user who scheduled the job and to one or multiple user groups.

- The user groups relevant for job notifications have to be set in the global parameter JOB_NOTIFICATION_USER_GROUP.

- The notification is visible in the SAP Fiori launchpad notifications area.

- An email notification can be sent to the users affected by the job status.
Attribute Permission Filters

Unmesh Gandhi
Attribute Permissions – Copy Feature

- Administrator can copy attribute permission filters

- Copy
 - Write Criteria
 - Read Criteria
 - Users
 - User Groups
Customer Influence Program Update

John Lopus
Customer Influence – Our Tool for Product Enhancement Ideas
Powered by SAP Innovation Management

Global cooperation of customers in the projects via the collaboration site

Customer Influence:

- **Search** and **Vote** for improvement requests
- **Submit** your own improvement request
- Comment on improvement requests
- Follow improvement requests (get notified)
- Choose your areas of interest to get notification on any projects that might interest you in the future.
- Collaboration language is English

http://influence.sap.com/ibp
How it works for customers

Integrated Business Planning continuous influence session is now ALWAYS open for your improvement request submission!

→ Logon to https://influence.sap.com/IBP

Follow the continuous session you want to Influence

Submit your improvement request

Vote on other good ideas

Once idea reaches voting threshold, it is ready for review*

Product development reviews ideas

Product team informs about results of review

Suitable improvement requests are built into an upcoming release

Specific for IBP:

minimum of 10 company votes is decided

review cycles are aligned with quarterly release planning

*Any idea that reaches the voting threshold is considered ready for review by the Product team.
Overall Statistics on IBP Customer Influence

1400+ Visitors to the IBP Influence Project

800+ Improvements Requests Submitted

6000+ Votes cast by more than 500 users

116 Delivered Enhancements
SAP Education: IBP Courses Update
Pramod Mane
Revised IBP classes Offerings

- IBP 100 – introductory class to all the modules of IBP, that explains functionality at a high level. E-learning option is available

- IBP 200 – where students are guided thru modelling a business for Sales & Operations Planning, utilizing heuristics function of time series supply planning. It is more business focused and sets foundation for technical configuration in IBP 300. E-learning option is available

- IBP 300 – is a packed class that teaches configuration starting from foundational objects and on to the advanced configuration topics. This is the only class that teaches configuration. E-learning option is available

- IBP 700 – guides students thru supply planning business processes using optimizer. This class is the most advanced and is offered via Live Instructor Training only

Please Note: IBP Certification is updated every few releases and in it’s next update will include questions derived from content of all of the above courses, with 15-20% allocated to supply optimization topics
IBP 700: Time Series based constraint Supply Planning (3 Days)

TS optimizer creates global feasible supply plans and have significant solving power to model different lines of business for different scenarios. Understanding of business processes together with ways of transforming supply problem into mathematical model used by the solver is necessary to achieve a high quality of planning in complex networks, to delivery significant business value. Both tactical and operational planning aspects are covered with hands-on experience, with a focus towards successful project implementations.

Upcoming Schedule for IBP 700 – to support implementations and certification needs:

- Chicago Mar 11-13
- Dallas Apr 29 – May 1
- Philadelphia NSQ: June 10-12
- San Francisco – July – week TBD
- Specific Partner/Customer sessions can be organized with SAP Education
Today’s Presenters from Product Management:
• alexis.lozada@sap.com – Inventory Optimization
• Andreas.munk@sap.com – IBP Best Practices
• andrew.boyle@sap.com – Order-based Planning
• anna.linden@sap.com – IBP Excel Add-In
• atul.bhandari01@sap.com – Demand Driven MRP (DDMRP)
• balazs.buday@sap.com – Model Configuration
• claus.bosch@sap.com – Order-based Planning
• gabor.mittweg@sap.com – Normalization
• g.ramakrishnan@sap.com – Integration
• kenton.harman@sap.com – Alerts, Analytics, and Dashboards
• mehmet.demirci@sap.com – Demand Sensing
• poorya.farahani@sap.com – Demand Driven MRP (DDMRP)
• pramod.mane@sap.com – Time-series based Supply Planning & Web-based Planning UI
• raghav.jandhyala@sap.com – Sales & Operations Planning
• rainer.moritz@sap.com – Demand Planning
• reinhard.sudmeier@sap.com – Integration
• u.gandhi@sap.com – IBP / IPS Integration Scenario & System Monitoring

IBP Central Customer Contacts:
IBP Customer Group Contact: david.kahn@sap.com
IBP Customer Office: john.lopus@sap.com

Thank you.